3.44 \(\int \frac{x^3 (d+e x)}{b x+c x^2} \, dx\)

Optimal. Leaf size=66 \[ \frac{b^2 (c d-b e) \log (b+c x)}{c^4}+\frac{x^2 (c d-b e)}{2 c^2}-\frac{b x (c d-b e)}{c^3}+\frac{e x^3}{3 c} \]

[Out]

-((b*(c*d - b*e)*x)/c^3) + ((c*d - b*e)*x^2)/(2*c^2) + (e*x^3)/(3*c) + (b^2*(c*d - b*e)*Log[b + c*x])/c^4

________________________________________________________________________________________

Rubi [A]  time = 0.0574302, antiderivative size = 66, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 1, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.05, Rules used = {765} \[ \frac{b^2 (c d-b e) \log (b+c x)}{c^4}+\frac{x^2 (c d-b e)}{2 c^2}-\frac{b x (c d-b e)}{c^3}+\frac{e x^3}{3 c} \]

Antiderivative was successfully verified.

[In]

Int[(x^3*(d + e*x))/(b*x + c*x^2),x]

[Out]

-((b*(c*d - b*e)*x)/c^3) + ((c*d - b*e)*x^2)/(2*c^2) + (e*x^3)/(3*c) + (b^2*(c*d - b*e)*Log[b + c*x])/c^4

Rule 765

Int[((e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand
Integrand[(e*x)^m*(f + g*x)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, e, f, g, m}, x] && IntegerQ[p] && (
GtQ[p, 0] || (EqQ[a, 0] && IntegerQ[m]))

Rubi steps

\begin{align*} \int \frac{x^3 (d+e x)}{b x+c x^2} \, dx &=\int \left (\frac{b (-c d+b e)}{c^3}+\frac{(c d-b e) x}{c^2}+\frac{e x^2}{c}-\frac{b^2 (-c d+b e)}{c^3 (b+c x)}\right ) \, dx\\ &=-\frac{b (c d-b e) x}{c^3}+\frac{(c d-b e) x^2}{2 c^2}+\frac{e x^3}{3 c}+\frac{b^2 (c d-b e) \log (b+c x)}{c^4}\\ \end{align*}

Mathematica [A]  time = 0.0212502, size = 61, normalized size = 0.92 \[ \frac{c x \left (6 b^2 e-3 b c (2 d+e x)+c^2 x (3 d+2 e x)\right )+6 b^2 (c d-b e) \log (b+c x)}{6 c^4} \]

Antiderivative was successfully verified.

[In]

Integrate[(x^3*(d + e*x))/(b*x + c*x^2),x]

[Out]

(c*x*(6*b^2*e - 3*b*c*(2*d + e*x) + c^2*x*(3*d + 2*e*x)) + 6*b^2*(c*d - b*e)*Log[b + c*x])/(6*c^4)

________________________________________________________________________________________

Maple [A]  time = 0.003, size = 76, normalized size = 1.2 \begin{align*}{\frac{e{x}^{3}}{3\,c}}-{\frac{b{x}^{2}e}{2\,{c}^{2}}}+{\frac{d{x}^{2}}{2\,c}}+{\frac{{b}^{2}ex}{{c}^{3}}}-{\frac{bdx}{{c}^{2}}}-{\frac{{b}^{3}\ln \left ( cx+b \right ) e}{{c}^{4}}}+{\frac{{b}^{2}\ln \left ( cx+b \right ) d}{{c}^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(e*x+d)/(c*x^2+b*x),x)

[Out]

1/3*e*x^3/c-1/2/c^2*x^2*b*e+1/2*d*x^2/c+1/c^3*b^2*e*x-1/c^2*b*d*x-b^3/c^4*ln(c*x+b)*e+b^2/c^3*ln(c*x+b)*d

________________________________________________________________________________________

Maxima [A]  time = 1.09317, size = 93, normalized size = 1.41 \begin{align*} \frac{2 \, c^{2} e x^{3} + 3 \,{\left (c^{2} d - b c e\right )} x^{2} - 6 \,{\left (b c d - b^{2} e\right )} x}{6 \, c^{3}} + \frac{{\left (b^{2} c d - b^{3} e\right )} \log \left (c x + b\right )}{c^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)/(c*x^2+b*x),x, algorithm="maxima")

[Out]

1/6*(2*c^2*e*x^3 + 3*(c^2*d - b*c*e)*x^2 - 6*(b*c*d - b^2*e)*x)/c^3 + (b^2*c*d - b^3*e)*log(c*x + b)/c^4

________________________________________________________________________________________

Fricas [A]  time = 1.75917, size = 149, normalized size = 2.26 \begin{align*} \frac{2 \, c^{3} e x^{3} + 3 \,{\left (c^{3} d - b c^{2} e\right )} x^{2} - 6 \,{\left (b c^{2} d - b^{2} c e\right )} x + 6 \,{\left (b^{2} c d - b^{3} e\right )} \log \left (c x + b\right )}{6 \, c^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)/(c*x^2+b*x),x, algorithm="fricas")

[Out]

1/6*(2*c^3*e*x^3 + 3*(c^3*d - b*c^2*e)*x^2 - 6*(b*c^2*d - b^2*c*e)*x + 6*(b^2*c*d - b^3*e)*log(c*x + b))/c^4

________________________________________________________________________________________

Sympy [A]  time = 0.620153, size = 58, normalized size = 0.88 \begin{align*} - \frac{b^{2} \left (b e - c d\right ) \log{\left (b + c x \right )}}{c^{4}} + \frac{e x^{3}}{3 c} - \frac{x^{2} \left (b e - c d\right )}{2 c^{2}} + \frac{x \left (b^{2} e - b c d\right )}{c^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(e*x+d)/(c*x**2+b*x),x)

[Out]

-b**2*(b*e - c*d)*log(b + c*x)/c**4 + e*x**3/(3*c) - x**2*(b*e - c*d)/(2*c**2) + x*(b**2*e - b*c*d)/c**3

________________________________________________________________________________________

Giac [A]  time = 1.13357, size = 100, normalized size = 1.52 \begin{align*} \frac{2 \, c^{2} x^{3} e + 3 \, c^{2} d x^{2} - 3 \, b c x^{2} e - 6 \, b c d x + 6 \, b^{2} x e}{6 \, c^{3}} + \frac{{\left (b^{2} c d - b^{3} e\right )} \log \left ({\left | c x + b \right |}\right )}{c^{4}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(e*x+d)/(c*x^2+b*x),x, algorithm="giac")

[Out]

1/6*(2*c^2*x^3*e + 3*c^2*d*x^2 - 3*b*c*x^2*e - 6*b*c*d*x + 6*b^2*x*e)/c^3 + (b^2*c*d - b^3*e)*log(abs(c*x + b)
)/c^4